

Your friends in every weather

VIBRATING CYLINDER

COMPARISON WITH SILICONE MEMBRANE

MICROSTEP-MIS CALIBRATION LABORATORY

To achieve the most accurate and professional measurement, it is necessary to employ a regular calibration and adjustment of the meteorological sensors.

MicroStep- MIS offers a comprehensive solution for calibration laboratory including:

- laboratory equipment and standards for the required quantity;
- validated calibration method;
- automation of calibration;
- staff training;
- preparation for accreditation and assistance during the accreditation process.

MICROSTEP-MIS CALIBRATION LABORATORY

We provide services of accredited calibration laboratory. Our laboratory has been accredited according to standard **ISO / IEC 17025: 2005** since February 2017.

Scope of accreditation:

- absolute pressure;
- temperature;
- relative humidity, dew point;
- tipping bucket rain gauges;
- and weighing rain gauges.

ESNAS	SLOVENSKÁ NÁRODNÁ AKREDITAČNÁ SLUŽBA
	Karloveská 63, 840 00 Bratislava 4, Slovenská republika
	CERTIFICATE
	OF ACCREDITATION
	No. K-102
The Slov	vak National Accreditation Service based on the decision so. 552/7175/2018/1 dated 22.02.2018 certifies that
1	MicroStep-MIS, spol. s r.o.
	Calibration laboratory Cavojského 1, 841 04 Bratislava IČO: 35 791 489
is competent to carry rain gauges within the Annex is an integral The accredited bod impartially and trus	y out calibration of instruments of temperature, humidity, pressure and he accreditation scope delineated in the Annex to this Certificate. The part of Certificate of Accreditation. y gives evidence of competence to perform the accredited activity tworthily by meeting the requirements of the ISO/IEC 17025: 2005
Stanaara.	ditation granted on 22.02.2018 is valid until 01.02.2022.
Bratislava 22.0	22018 (SNAS) Martin S e a dat director
SNAS is sig	natory to the EA MLA and ILAC MRA in the field of the above-mentioned accreditation.

INTRODUCTION | DIGITAL BAROMETER MSB780X

Solid-state transducer implemented in the barometer offers world class parameters:

- Accuracy it is ideal for the most demanding applications, where exactness and durability are required
- **Stability** advanced long-term stability and temperature dependence

Hardware design will grant you excellent

- **Durability** heavy-duty metal enclosure rated IP 66
- **Reliability** features self-tests and error reporting via SDI-12 and serial lines

VIBRATING CYLINDER TECHNOLOGY

Description

- Oscillating cylinder, where frequency of oscillation is dependent on pressure of the air inside.
- Outside of the vibrating cylinder is evacuated and the inside is connected to the air source.
- Use of high-elasticity and low hysteretic materials results in a highly-stable and high-resolution measurement method.

Air must be used as a pressure medium during calibration.

COMPARISON | VIBRATING CYLINDER VS. SILICONE MEMBRANE

Oscillating cylinder, where frequency of oscillation is dependent on pressure of the air inside.

Micromechanical element that uses dimensional changes in its silicone membrane to measure pressure reading.

COMPARISON | VIBRATING CYLINDER VS. SILICONE MEMBRANE

		Vibrating cylinder		Silicone membrane	
	Unit	Class A	Class A+	Class B high range / low range	Class A low range
Pressure range	hPa	103 - 1450	35 - 1310	50 – 1100 / 500 - 1100	500 – 1100
Linearity ^{A) B)}	hPa			±0.20 / ±0.10	±0.05
Hysteresis ^{A)}	hPa	<12 ppm = 0.017 hPa	<10 ppm = 0.013 hPa	±0.08 / ±0.03	±0.03
Repeatability ^{A)}	hPa			±0.08 / ±0.03	±0.03
Calibration uncertainty	hPa			±0.15	±0.07
Accuracy	hPa	N/A - see total accuracy	N/A - see total accuracy	±0.20 @ 20 °C	±0.10 @ 20 °C
Temperature dependence ^{B)}	hPa			±0.30	
Total accuracy	hPa	Better than ±0.145 between -40 & +85 °C	Better than ±0.13 between -55 & +125 °C	±0.45 / ±0.25 between -40 & +60 °C	±0.15 between -40 & +60 °C
Long term stability	hPa	50 ppm in year 1, 20 ppm thereafter	50 ppm in year 1, 20 ppm thereafter	±0.10 (76 ppm/yr)	
Maximum pressure	hPa	4350 W/O derangement	3900 W/O derangement	5000	
	hPa	7250 burst pressure	6500 burst pressure	5000	
Setting time at start up	ms	700 ms	1500 ms max	3000	4000
Response time	ms	Less than 5 ms	Less than 0.5 ms	1000	2000

A) See slides 11, 12, 13.

7

B) Linearity and temperature dependence do not apply because of the way we do a pressure temperature surface fit.

ADVANTAGES OF VIBRATING CYLINDER

Stable vacuum

All barometers, no matter what element they use, supply atmospheric pressure to one side of the element and the so-called reference vacuum on the other side of the element.

- Reference vacuum important for long term stability
- In a vibrating cylinder the permeability of the molecules into the vacuum is less than in the silicon membrane element therefore guarantees better long term stability
- Drift close to zero due to all metalic welded construction

ADVANTAGES OF VIBRATING CYLINDER

Thermal hysteresis

SILICONE MEMBRANE – prone to drifts due to external stress (thermal or other) requiring long periods of temperature conditioning.

VS

9

VIBRATING CYLINDER - is all made of the same material (Ni-Span-C) so does not have the thermal expansion mismatch issues.

Even more accurate pressure reading is achieved by compensating for air humidity.

ADVANTAGES OF VIBRATING CYLINDER

Overload will not destroy the barometer

SILICONE MEMBRANE - RECALIBRATION REQUIRED

Overload can cause deformation or even irreparable damage to the element (can be eliminated by installing preventative measures in the form of other elements).

VS

VIBRATING CYLINDER - NO RECALIBRATION REQUIRED

Overload to 3 times the maximum pressure will cause NO CHANGE in calibration

ADVANTAGES OF VIBRATING CYLINDER

Low noise

SILICONE MEMBRANE

• The pressure is determinated by the capacitance

VS

VIBRATING CYLINDER

• The pressure is determined by the frequency

Frequency measurement is very accurate with low noise.

ADVANTAGES OF VIBRATING CYLINDER

Low noise | Data are measured by NMI (National Metrology Institute)

Scattering/Noise of the frequency is about 1mHz (1e-10)

Noise of the pressure is about 0,2 Pa (0,002 hPa)

CALIBRATION OF OUR REFERENCE STANDARD IN THE YEARS FROM 2017 - 2020

Slovak Institute of Metrology

Calibration of our reference standard in the years from 2017 to 2020. Calibrations were performed by our accredited laboratory and the Slovak Institute of Metrology. A piston pressure gauge was used as a standard.

As can be seen in both cases, even in 3 years, the declared long-term stability was not exceeded in one year (0.05 hPa).

THE RESULTS OF THE CALIBRATION OF THE RANDOMLY SELECTED BAROMETERS

Slovak Institute of Metrology

Calibration of our reference standard in the years from 2017 to 2020. Calibrations were performed by our accredited laboratory and the Slovak Metrology Institute. A piston pressure gauge was used as a standard.

As can be seen in both cases, even in 3 years, the declared long-term stability was not exceeded in one year (0.05 hPa).

EVALUATION OF LONG-TERM STABILITY ON 11 PIECES OF ESTERLINE 7800 PRESSURE ELEMENTS

No.	S/N	Number of tests	Testing time (year)	ABSdrift hPa/year
1	616549	126	4,3	0,012
2	611104	111	3,17	0,000
3	910117	13	0,75	0,004
4	811835	42	3,97	0,016
5	624700	17	2,23	0,009
6	624701	17	2,23	0,030
7	624702	16	2,23	0,028
8	624703	18	2,2	0,006
9	624704	16	2,3	0,009
10	624705	33	0,57	0,009
11	910117	13	0,75	0,004

During the whole testing period, none of the elements drifted more than 0.5 hPa / year

3 SILICONE ELEMENTS VS 1 VIBRATING CYLINDER ELEMENT

3 elements for 1 barometer were put into practice due to mutual control by the barometer.

3 SILICONE MEMBRANE

- Mutual control by a barometer
- Error / drift of one element was able to compensate by other elements.

1 VIBRATING CYLINDER

- None of the tested elements exceeded the drift values during the testing (slide 12)
- A barometer with one vibrating element can meet the requirements (slide 11)
- the difference between 3-chamber and 1chamber is negligible (slide 11 vs 10)

It is not necessary to require three vibrating cylinder elements.

SUMMARY

MSB780 and MSB780X offer barometer with a premium quality

Quality stands for

- ✓ Accuracy
- ✓ Reliability
- ✓ Stability
- ✓ Durability

Usable in the harshest environments while still customizable.

DECLARATIONS

Vibrating Cylinder Technology

18

MicroStep - MIS

CONTACT US | HEAD OFFICE

info@microstep-mis.com

www.microstep-mis.com

CONTACT US | OFFICES WORLDWIDE

